2023
Bernardes, Mariana C.; Moreira, Pedro; Mareschal, Lisa; Tempany, Clare; Tuncali, Kemal; Hata, Nobuhiko; Tokuda, Junichi
Data-driven adaptive needle insertion assist for transperineal prostate interventions Journal Article
In: PHYSICS IN MEDICINE AND BIOLOGY, vol. 68, no. 10, pp. 105016, 2023, ISSN: 0031-9155, 1361-6560, (Num Pages: 14 Place: Bristol Publisher: IoP Publishing Ltd Web of Science ID: WOS:000987076600001).
Abstract | Links | BibTeX | Tags: biopsy, Brachytherapy, CANCER, Cryoablation, data-driven model, FEASIBILITY, Force, medical robotics, MOTION, needle insertion assist, Robot, TISSUE, transperineal prostate intervention, Ultrasound
@article{bernardes_data-driven_2023,
title = {Data-driven adaptive needle insertion assist for transperineal prostate interventions},
author = {Mariana C. Bernardes and Pedro Moreira and Lisa Mareschal and Clare Tempany and Kemal Tuncali and Nobuhiko Hata and Junichi Tokuda},
doi = {10.1088/1361-6560/accefa},
issn = {0031-9155, 1361-6560},
year = {2023},
date = {2023-05-01},
journal = {PHYSICS IN MEDICINE AND BIOLOGY},
volume = {68},
number = {10},
pages = {105016},
abstract = {Objective. Clinical outcomes of transperineal prostate interventions, such as biopsy, thermal ablations, and brachytherapy, depend on accurate needle placement for effectiveness. However, the accurate placement of a long needle, typically 150-200 mm in length, is challenging due to needle deviation induced by needle-tissue interaction. While several approaches for needle trajectory correction have been studied, many of them do not translate well to practical applications due to the use of specialized needles not yet approved for clinical use, or to relying on needle-tissue models that need to be tailored to individual patients. Approach. In this paper, we present a robot-assisted collaborative needle insertion method that only requires an actuated passive needle guide and a conventional needle. The method is designed to assist a physician inserting a needle manually through a needle guide. If the needle is deviated from the intended path, actuators shifts the needle radially in order to steer the needle trajectory and compensate for needle deviation adaptively. The needle guide is controlled by a new data-driven algorithm which does not require a priori information about needle or tissue properties. The method was evaluated in experiments with both in vitro and ex vivo phantoms. Main results. The experiments in ex vivo tissue reported a mean final placement error of 0.36 mm with a reduction of 96.25% of placement error when compared to insertions without the use of assistive correction. Significance. Presented results show that the proposed closed-loop formulation can be successfully used to correct needle deflection during collaborative manual insertion with potential to be easily translated into clinical application.},
note = {Num Pages: 14
Place: Bristol
Publisher: IoP Publishing Ltd
Web of Science ID: WOS:000987076600001},
keywords = {biopsy, Brachytherapy, CANCER, Cryoablation, data-driven model, FEASIBILITY, Force, medical robotics, MOTION, needle insertion assist, Robot, TISSUE, transperineal prostate intervention, Ultrasound},
pubstate = {published},
tppubtype = {article}
}
2018
Tokuda, Junichi; Chauvin, Laurent; Ninni, Brian; Kato, Takahisa; King, Franklin; Tuncali, Kemal; Hata, Nobuhiko
Motion compensation for MRI-compatible patient-mounted needle guide device: estimation of targeting accuracy in MRI-guided kidney cryoablations Journal Article
In: PHYSICS IN MEDICINE AND BIOLOGY, vol. 63, no. 8, pp. 085010, 2018, ISSN: 0031-9155, 1361-6560, (Num Pages: 16 Place: Bristol Publisher: IoP Publishing Ltd Web of Science ID: WOS:000429950600005).
Abstract | Links | BibTeX | Tags: ABLATION, CRYOTHERAPY, CT, guidance, LIVER-TUMORS, manipulator, MRI-compatible robot, MRI-guided interventions, PERCUTANEOUS CRYOABLATION, renal cryoablation, Robot, SYSTEM, THERAPY
@article{tokuda_motion_2018,
title = {Motion compensation for MRI-compatible patient-mounted needle guide device: estimation of targeting accuracy in MRI-guided kidney cryoablations},
author = {Junichi Tokuda and Laurent Chauvin and Brian Ninni and Takahisa Kato and Franklin King and Kemal Tuncali and Nobuhiko Hata},
doi = {10.1088/1361-6560/aab736},
issn = {0031-9155, 1361-6560},
year = {2018},
date = {2018-04-01},
journal = {PHYSICS IN MEDICINE AND BIOLOGY},
volume = {63},
number = {8},
pages = {085010},
abstract = {Patient-mounted needle guide devices for percutaneous ablation are vulnerable to patient motion. The objective of this study is to develop and evaluate a software system for an MRI-compatible patient-mounted needle guide device that can adaptively compensate for displacement of the device due to patient motion using a novel image-based automatic device-to-image registration technique. We have developed a software system for an MRI-compatible patient-mounted needle guide device for percutaneous ablation. It features fully-automated image-based device-to-image registration to track the device position, and a device controller to adjust the needle trajectory to compensate for the displacement of the device. We performed: (a) a phantom study using a clinical MR scanner to evaluate registration performance; (b) simulations using intraoperative time-series MR data acquired in 20 clinical cases of MRI-guided renal cryoablations to assess its impact on motion compensation; and (c) a pilot clinical study in three patients to test its feasibility during the clinical procedure. FRE, TRE, and success rate of device-to-image registration were 2.71 +/- 2.29 mm,1.74 +/- 1.13 mm, and 98.3% for the phantom images. The simulation study showed that the motion compensation reduced the targeting error for needle placement from 8.2 mm to 5.4 mm (p < 0.0005) in patients under general anesthesia (GA), and from 14.4 mm to 10.0 mm (p < 1.0 x 10 -5 ) in patients under monitored anesthesia care (MAC). The pilot study showed that the software registered the device successfully in a clinical setting. Our simulation study demonstrated that the software system could significantly improve targeting accuracy in patients treated under both MAC and GA. Intraprocedural image-based device-to-image registration was feasible.},
note = {Num Pages: 16
Place: Bristol
Publisher: IoP Publishing Ltd
Web of Science ID: WOS:000429950600005},
keywords = {ABLATION, CRYOTHERAPY, CT, guidance, LIVER-TUMORS, manipulator, MRI-compatible robot, MRI-guided interventions, PERCUTANEOUS CRYOABLATION, renal cryoablation, Robot, SYSTEM, THERAPY},
pubstate = {published},
tppubtype = {article}
}